3.4.45 \(\int \frac {x}{(d+e x^2) (a+b x^2+c x^4)^{3/2}} \, dx\) [345]

3.4.45.1 Optimal result
3.4.45.2 Mathematica [A] (verified)
3.4.45.3 Rubi [A] (verified)
3.4.45.4 Maple [A] (verified)
3.4.45.5 Fricas [B] (verification not implemented)
3.4.45.6 Sympy [F]
3.4.45.7 Maxima [F]
3.4.45.8 Giac [B] (verification not implemented)
3.4.45.9 Mupad [F(-1)]

3.4.45.1 Optimal result

Integrand size = 27, antiderivative size = 166 \[ \int \frac {x}{\left (d+e x^2\right ) \left (a+b x^2+c x^4\right )^{3/2}} \, dx=-\frac {b c d-b^2 e+2 a c e+c (2 c d-b e) x^2}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {a+b x^2+c x^4}}+\frac {e^2 \text {arctanh}\left (\frac {b d-2 a e+(2 c d-b e) x^2}{2 \sqrt {c d^2-b d e+a e^2} \sqrt {a+b x^2+c x^4}}\right )}{2 \left (c d^2-b d e+a e^2\right )^{3/2}} \]

output
1/2*e^2*arctanh(1/2*(b*d-2*a*e+(-b*e+2*c*d)*x^2)/(a*e^2-b*d*e+c*d^2)^(1/2) 
/(c*x^4+b*x^2+a)^(1/2))/(a*e^2-b*d*e+c*d^2)^(3/2)+(-b*c*d+b^2*e-2*a*c*e-c* 
(-b*e+2*c*d)*x^2)/(-4*a*c+b^2)/(a*e^2-b*d*e+c*d^2)/(c*x^4+b*x^2+a)^(1/2)
 
3.4.45.2 Mathematica [A] (verified)

Time = 0.90 (sec) , antiderivative size = 182, normalized size of antiderivative = 1.10 \[ \int \frac {x}{\left (d+e x^2\right ) \left (a+b x^2+c x^4\right )^{3/2}} \, dx=\frac {-b^2 e+2 c \left (a e+c d x^2\right )+b c \left (d-e x^2\right )}{\left (b^2-4 a c\right ) \left (-c d^2+e (b d-a e)\right ) \sqrt {a+b x^2+c x^4}}+\frac {e^2 \sqrt {-c d^2+e (b d-a e)} \arctan \left (\frac {\sqrt {-c d^2+e (b d-a e)} x^2}{\sqrt {a} \left (d+e x^2\right )-d \sqrt {a+b x^2+c x^4}}\right )}{\left (c d^2+e (-b d+a e)\right )^2} \]

input
Integrate[x/((d + e*x^2)*(a + b*x^2 + c*x^4)^(3/2)),x]
 
output
(-(b^2*e) + 2*c*(a*e + c*d*x^2) + b*c*(d - e*x^2))/((b^2 - 4*a*c)*(-(c*d^2 
) + e*(b*d - a*e))*Sqrt[a + b*x^2 + c*x^4]) + (e^2*Sqrt[-(c*d^2) + e*(b*d 
- a*e)]*ArcTan[(Sqrt[-(c*d^2) + e*(b*d - a*e)]*x^2)/(Sqrt[a]*(d + e*x^2) - 
 d*Sqrt[a + b*x^2 + c*x^4])])/(c*d^2 + e*(-(b*d) + a*e))^2
 
3.4.45.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.01, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.185, Rules used = {1576, 1165, 27, 1154, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{\left (d+e x^2\right ) \left (a+b x^2+c x^4\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 1576

\(\displaystyle \frac {1}{2} \int \frac {1}{\left (e x^2+d\right ) \left (c x^4+b x^2+a\right )^{3/2}}dx^2\)

\(\Big \downarrow \) 1165

\(\displaystyle \frac {1}{2} \left (-\frac {2 \int -\frac {\left (b^2-4 a c\right ) e^2}{2 \left (e x^2+d\right ) \sqrt {c x^4+b x^2+a}}dx^2}{\left (b^2-4 a c\right ) \left (a e^2-b d e+c d^2\right )}-\frac {2 \left (2 a c e+b^2 (-e)+c x^2 (2 c d-b e)+b c d\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4} \left (a e^2-b d e+c d^2\right )}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{2} \left (\frac {e^2 \int \frac {1}{\left (e x^2+d\right ) \sqrt {c x^4+b x^2+a}}dx^2}{a e^2-b d e+c d^2}-\frac {2 \left (2 a c e+b^2 (-e)+c x^2 (2 c d-b e)+b c d\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4} \left (a e^2-b d e+c d^2\right )}\right )\)

\(\Big \downarrow \) 1154

\(\displaystyle \frac {1}{2} \left (-\frac {2 e^2 \int \frac {1}{4 \left (c d^2-b e d+a e^2\right )-x^4}d\left (-\frac {(2 c d-b e) x^2+b d-2 a e}{\sqrt {c x^4+b x^2+a}}\right )}{a e^2-b d e+c d^2}-\frac {2 \left (2 a c e+b^2 (-e)+c x^2 (2 c d-b e)+b c d\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4} \left (a e^2-b d e+c d^2\right )}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {1}{2} \left (\frac {e^2 \text {arctanh}\left (\frac {-2 a e+x^2 (2 c d-b e)+b d}{2 \sqrt {a+b x^2+c x^4} \sqrt {a e^2-b d e+c d^2}}\right )}{\left (a e^2-b d e+c d^2\right )^{3/2}}-\frac {2 \left (2 a c e+b^2 (-e)+c x^2 (2 c d-b e)+b c d\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x^2+c x^4} \left (a e^2-b d e+c d^2\right )}\right )\)

input
Int[x/((d + e*x^2)*(a + b*x^2 + c*x^4)^(3/2)),x]
 
output
((-2*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x^2))/((b^2 - 4*a*c)*(c*d^ 
2 - b*d*e + a*e^2)*Sqrt[a + b*x^2 + c*x^4]) + (e^2*ArcTanh[(b*d - 2*a*e + 
(2*c*d - b*e)*x^2)/(2*Sqrt[c*d^2 - b*d*e + a*e^2]*Sqrt[a + b*x^2 + c*x^4]) 
])/(c*d^2 - b*d*e + a*e^2)^(3/2))/2
 

3.4.45.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1154
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Sym 
bol] :> Simp[-2   Subst[Int[1/(4*c*d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, ( 
2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c 
, d, e}, x]
 

rule 1165
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(d + e*x)^(m + 1)*(b*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e) 
*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^ 
2))), x] + Simp[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))   Int[(d 
+ e*x)^m*Simp[b*c*d*e*(2*p - m + 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p 
+ 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*x, x]*(a + 
 b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && LtQ[p, -1] 
 && IntQuadraticQ[a, b, c, d, e, m, p, x]
 

rule 1576
Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^( 
p_.), x_Symbol] :> Simp[1/2   Subst[Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x] 
, x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]
 
3.4.45.4 Maple [A] (verified)

Time = 0.40 (sec) , antiderivative size = 223, normalized size of antiderivative = 1.34

method result size
pseudoelliptic \(\frac {-e \sqrt {c \,x^{4}+b \,x^{2}+a}\, \left (a c -\frac {b^{2}}{4}\right ) \ln \left (\frac {2 \sqrt {c \,x^{4}+b \,x^{2}+a}\, \sqrt {\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}\, e +\left (b \,x^{2}+2 a \right ) e -d \left (2 c \,x^{2}+b \right )}{e \,x^{2}+d}\right )+\left (c^{2} d \,x^{2}+\left (\left (-\frac {b \,x^{2}}{2}+a \right ) e +\frac {b d}{2}\right ) c -\frac {b^{2} e}{2}\right ) \sqrt {\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}}{2 \sqrt {c \,x^{4}+b \,x^{2}+a}\, \sqrt {\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}\, \left (a \,e^{2}-b d e +c \,d^{2}\right ) \left (a c -\frac {b^{2}}{4}\right )}\) \(223\)
default \(-\frac {2 c \sqrt {c \left (x^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )^{2}+\sqrt {-4 a c +b^{2}}\, \left (x^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}}{\left (e \sqrt {-4 a c +b^{2}}-b e +2 c d \right ) \left (-4 a c +b^{2}\right ) \left (x^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}+\frac {2 c \sqrt {c \left (x^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )^{2}-\sqrt {-4 a c +b^{2}}\, \left (x^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}}{\left (e \sqrt {-4 a c +b^{2}}+b e -2 c d \right ) \left (-4 a c +b^{2}\right ) \left (x^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}+\frac {2 c e \ln \left (\frac {\frac {2 a \,e^{2}-2 b d e +2 c \,d^{2}}{e^{2}}+\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+2 \sqrt {\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x^{2}+\frac {d}{e}\right )^{2}+\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}}{x^{2}+\frac {d}{e}}\right )}{\left (e \sqrt {-4 a c +b^{2}}-b e +2 c d \right ) \left (e \sqrt {-4 a c +b^{2}}+b e -2 c d \right ) \sqrt {\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}}\) \(454\)
elliptic \(-\frac {2 c \sqrt {c \left (x^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )^{2}+\sqrt {-4 a c +b^{2}}\, \left (x^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}}{\left (e \sqrt {-4 a c +b^{2}}-b e +2 c d \right ) \left (-4 a c +b^{2}\right ) \left (x^{2}-\frac {-b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}+\frac {2 c \sqrt {c \left (x^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )^{2}-\sqrt {-4 a c +b^{2}}\, \left (x^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}}{\left (e \sqrt {-4 a c +b^{2}}+b e -2 c d \right ) \left (-4 a c +b^{2}\right ) \left (x^{2}+\frac {b +\sqrt {-4 a c +b^{2}}}{2 c}\right )}+\frac {2 c e \ln \left (\frac {\frac {2 a \,e^{2}-2 b d e +2 c \,d^{2}}{e^{2}}+\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+2 \sqrt {\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x^{2}+\frac {d}{e}\right )^{2}+\frac {\left (b e -2 c d \right ) \left (x^{2}+\frac {d}{e}\right )}{e}+\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}}{x^{2}+\frac {d}{e}}\right )}{\left (e \sqrt {-4 a c +b^{2}}-b e +2 c d \right ) \left (e \sqrt {-4 a c +b^{2}}+b e -2 c d \right ) \sqrt {\frac {a \,e^{2}-b d e +c \,d^{2}}{e^{2}}}}\) \(454\)

input
int(x/(e*x^2+d)/(c*x^4+b*x^2+a)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/2*(-e*(c*x^4+b*x^2+a)^(1/2)*(a*c-1/4*b^2)*ln((2*(c*x^4+b*x^2+a)^(1/2)*(( 
a*e^2-b*d*e+c*d^2)/e^2)^(1/2)*e+(b*x^2+2*a)*e-d*(2*c*x^2+b))/(e*x^2+d))+(c 
^2*d*x^2+((-1/2*b*x^2+a)*e+1/2*b*d)*c-1/2*b^2*e)*((a*e^2-b*d*e+c*d^2)/e^2) 
^(1/2))/(c*x^4+b*x^2+a)^(1/2)/((a*e^2-b*d*e+c*d^2)/e^2)^(1/2)/(a*e^2-b*d*e 
+c*d^2)/(a*c-1/4*b^2)
 
3.4.45.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 668 vs. \(2 (154) = 308\).

Time = 0.56 (sec) , antiderivative size = 1379, normalized size of antiderivative = 8.31 \[ \int \frac {x}{\left (d+e x^2\right ) \left (a+b x^2+c x^4\right )^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(x/(e*x^2+d)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="fricas")
 
output
[1/4*(((b^2*c - 4*a*c^2)*e^2*x^4 + (b^3 - 4*a*b*c)*e^2*x^2 + (a*b^2 - 4*a^ 
2*c)*e^2)*sqrt(c*d^2 - b*d*e + a*e^2)*log(-((8*c^2*d^2 - 8*b*c*d*e + (b^2 
+ 4*a*c)*e^2)*x^4 - 8*a*b*d*e + 8*a^2*e^2 + (b^2 + 4*a*c)*d^2 + 2*(4*b*c*d 
^2 + 4*a*b*e^2 - (3*b^2 + 4*a*c)*d*e)*x^2 + 4*sqrt(c*x^4 + b*x^2 + a)*sqrt 
(c*d^2 - b*d*e + a*e^2)*((2*c*d - b*e)*x^2 + b*d - 2*a*e))/(e^2*x^4 + 2*d* 
e*x^2 + d^2)) - 4*(b*c^2*d^3 - 2*(b^2*c - a*c^2)*d^2*e + (b^3 - a*b*c)*d*e 
^2 - (a*b^2 - 2*a^2*c)*e^3 + (2*c^3*d^3 - 3*b*c^2*d^2*e - a*b*c*e^3 + (b^2 
*c + 2*a*c^2)*d*e^2)*x^2)*sqrt(c*x^4 + b*x^2 + a))/((a*b^2*c^2 - 4*a^2*c^3 
)*d^4 - 2*(a*b^3*c - 4*a^2*b*c^2)*d^3*e + (a*b^4 - 2*a^2*b^2*c - 8*a^3*c^2 
)*d^2*e^2 - 2*(a^2*b^3 - 4*a^3*b*c)*d*e^3 + (a^3*b^2 - 4*a^4*c)*e^4 + ((b^ 
2*c^3 - 4*a*c^4)*d^4 - 2*(b^3*c^2 - 4*a*b*c^3)*d^3*e + (b^4*c - 2*a*b^2*c^ 
2 - 8*a^2*c^3)*d^2*e^2 - 2*(a*b^3*c - 4*a^2*b*c^2)*d*e^3 + (a^2*b^2*c - 4* 
a^3*c^2)*e^4)*x^4 + ((b^3*c^2 - 4*a*b*c^3)*d^4 - 2*(b^4*c - 4*a*b^2*c^2)*d 
^3*e + (b^5 - 2*a*b^3*c - 8*a^2*b*c^2)*d^2*e^2 - 2*(a*b^4 - 4*a^2*b^2*c)*d 
*e^3 + (a^2*b^3 - 4*a^3*b*c)*e^4)*x^2), 1/2*(((b^2*c - 4*a*c^2)*e^2*x^4 + 
(b^3 - 4*a*b*c)*e^2*x^2 + (a*b^2 - 4*a^2*c)*e^2)*sqrt(-c*d^2 + b*d*e - a*e 
^2)*arctan(-1/2*sqrt(c*x^4 + b*x^2 + a)*sqrt(-c*d^2 + b*d*e - a*e^2)*((2*c 
*d - b*e)*x^2 + b*d - 2*a*e)/((c^2*d^2 - b*c*d*e + a*c*e^2)*x^4 + a*c*d^2 
- a*b*d*e + a^2*e^2 + (b*c*d^2 - b^2*d*e + a*b*e^2)*x^2)) - 2*(b*c^2*d^3 - 
 2*(b^2*c - a*c^2)*d^2*e + (b^3 - a*b*c)*d*e^2 - (a*b^2 - 2*a^2*c)*e^3 ...
 
3.4.45.6 Sympy [F]

\[ \int \frac {x}{\left (d+e x^2\right ) \left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {x}{\left (d + e x^{2}\right ) \left (a + b x^{2} + c x^{4}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(x/(e*x**2+d)/(c*x**4+b*x**2+a)**(3/2),x)
 
output
Integral(x/((d + e*x**2)*(a + b*x**2 + c*x**4)**(3/2)), x)
 
3.4.45.7 Maxima [F]

\[ \int \frac {x}{\left (d+e x^2\right ) \left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int { \frac {x}{{\left (c x^{4} + b x^{2} + a\right )}^{\frac {3}{2}} {\left (e x^{2} + d\right )}} \,d x } \]

input
integrate(x/(e*x^2+d)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="maxima")
 
output
integrate(x/((c*x^4 + b*x^2 + a)^(3/2)*(e*x^2 + d)), x)
 
3.4.45.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 468 vs. \(2 (154) = 308\).

Time = 0.28 (sec) , antiderivative size = 468, normalized size of antiderivative = 2.82 \[ \int \frac {x}{\left (d+e x^2\right ) \left (a+b x^2+c x^4\right )^{3/2}} \, dx=\frac {e^{2} \arctan \left (-\frac {{\left (\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}\right )} e + \sqrt {c} d}{\sqrt {-c d^{2} + b d e - a e^{2}}}\right )}{{\left (c d^{2} - b d e + a e^{2}\right )} \sqrt {-c d^{2} + b d e - a e^{2}}} - \frac {\frac {{\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e + b^{2} c d e^{2} + 2 \, a c^{2} d e^{2} - a b c e^{3}\right )} x^{2}}{b^{2} c^{2} d^{4} - 4 \, a c^{3} d^{4} - 2 \, b^{3} c d^{3} e + 8 \, a b c^{2} d^{3} e + b^{4} d^{2} e^{2} - 2 \, a b^{2} c d^{2} e^{2} - 8 \, a^{2} c^{2} d^{2} e^{2} - 2 \, a b^{3} d e^{3} + 8 \, a^{2} b c d e^{3} + a^{2} b^{2} e^{4} - 4 \, a^{3} c e^{4}} + \frac {b c^{2} d^{3} - 2 \, b^{2} c d^{2} e + 2 \, a c^{2} d^{2} e + b^{3} d e^{2} - a b c d e^{2} - a b^{2} e^{3} + 2 \, a^{2} c e^{3}}{b^{2} c^{2} d^{4} - 4 \, a c^{3} d^{4} - 2 \, b^{3} c d^{3} e + 8 \, a b c^{2} d^{3} e + b^{4} d^{2} e^{2} - 2 \, a b^{2} c d^{2} e^{2} - 8 \, a^{2} c^{2} d^{2} e^{2} - 2 \, a b^{3} d e^{3} + 8 \, a^{2} b c d e^{3} + a^{2} b^{2} e^{4} - 4 \, a^{3} c e^{4}}}{\sqrt {c x^{4} + b x^{2} + a}} \]

input
integrate(x/(e*x^2+d)/(c*x^4+b*x^2+a)^(3/2),x, algorithm="giac")
 
output
e^2*arctan(-((sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 + a))*e + sqrt(c)*d)/sqrt(- 
c*d^2 + b*d*e - a*e^2))/((c*d^2 - b*d*e + a*e^2)*sqrt(-c*d^2 + b*d*e - a*e 
^2)) - ((2*c^3*d^3 - 3*b*c^2*d^2*e + b^2*c*d*e^2 + 2*a*c^2*d*e^2 - a*b*c*e 
^3)*x^2/(b^2*c^2*d^4 - 4*a*c^3*d^4 - 2*b^3*c*d^3*e + 8*a*b*c^2*d^3*e + b^4 
*d^2*e^2 - 2*a*b^2*c*d^2*e^2 - 8*a^2*c^2*d^2*e^2 - 2*a*b^3*d*e^3 + 8*a^2*b 
*c*d*e^3 + a^2*b^2*e^4 - 4*a^3*c*e^4) + (b*c^2*d^3 - 2*b^2*c*d^2*e + 2*a*c 
^2*d^2*e + b^3*d*e^2 - a*b*c*d*e^2 - a*b^2*e^3 + 2*a^2*c*e^3)/(b^2*c^2*d^4 
 - 4*a*c^3*d^4 - 2*b^3*c*d^3*e + 8*a*b*c^2*d^3*e + b^4*d^2*e^2 - 2*a*b^2*c 
*d^2*e^2 - 8*a^2*c^2*d^2*e^2 - 2*a*b^3*d*e^3 + 8*a^2*b*c*d*e^3 + a^2*b^2*e 
^4 - 4*a^3*c*e^4))/sqrt(c*x^4 + b*x^2 + a)
 
3.4.45.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x}{\left (d+e x^2\right ) \left (a+b x^2+c x^4\right )^{3/2}} \, dx=\int \frac {x}{\left (e\,x^2+d\right )\,{\left (c\,x^4+b\,x^2+a\right )}^{3/2}} \,d x \]

input
int(x/((d + e*x^2)*(a + b*x^2 + c*x^4)^(3/2)),x)
 
output
int(x/((d + e*x^2)*(a + b*x^2 + c*x^4)^(3/2)), x)